2,820 research outputs found

    Non-Abelian Kubo Formula and the Multiple Time-Scale Method

    Get PDF
    The non-Abelian Kubo formula is derived from the kinetic theory. That expression is compared with the one obtained using the eikonal for a Chern-Simons theory. The multiple time-scale method is used to solve the non-Abelian Kubo formula, and the damping rate for longitudinal color waves is computed.Comment: 18 pages, latex , to be pblished in Ann. Phys.(N,Y)(1996

    Online Monaural Speech Enhancement Using Delayed Subband LSTM

    Get PDF
    This paper proposes a delayed subband LSTM network for online monaural (single-channel) speech enhancement. The proposed method is developed in the short time Fourier transform (STFT) domain. Online processing requires frame-by-frame signal reception and processing. A paramount feature of the proposed method is that the same LSTM is used across frequencies, which drastically reduces the number of network parameters, the amount of training data and the computational burden. Training is performed in a subband manner: the input consists of one frequency, together with a few context frequencies. The network learns a speech-to-noise discriminative function relying on the signal stationarity and on the local spectral pattern, based on which it predicts a clean-speech mask at each frequency. To exploit future information, i.e. look-ahead, we propose an output-delayed subband architecture, which allows the unidirectional forward network to process a few future frames in addition to the current frame. We leverage the proposed method to participate to the DNS real-time speech enhancement challenge. Experiments with the DNS dataset show that the proposed method achieves better performance-measuring scores than the DNS baseline method, which learns the full-band spectra using a gated recurrent unit network.Comment: Paper submitted to Interspeech 202

    Blind MultiChannel Identification and Equalization for Dereverberation and Noise Reduction based on Convolutive Transfer Function

    Get PDF
    This paper addresses the problems of blind channel identification and multichannel equalization for speech dereverberation and noise reduction. The time-domain cross-relation method is not suitable for blind room impulse response identification, due to the near-common zeros of the long impulse responses. We extend the cross-relation method to the short-time Fourier transform (STFT) domain, in which the time-domain impulse responses are approximately represented by the convolutive transfer functions (CTFs) with much less coefficients. The CTFs suffer from the common zeros caused by the oversampled STFT. We propose to identify CTFs based on the STFT with the oversampled signals and the critical sampled CTFs, which is a good compromise between the frequency aliasing of the signals and the common zeros problem of CTFs. In addition, a normalization of the CTFs is proposed to remove the gain ambiguity across sub-bands. In the STFT domain, the identified CTFs is used for multichannel equalization, in which the sparsity of speech signals is exploited. We propose to perform inverse filtering by minimizing the â„“1\ell_1-norm of the source signal with the relaxed â„“2\ell_2-norm fitting error between the micophone signals and the convolution of the estimated source signal and the CTFs used as a constraint. This method is advantageous in that the noise can be reduced by relaxing the â„“2\ell_2-norm to a tolerance corresponding to the noise power, and the tolerance can be automatically set. The experiments confirm the efficiency of the proposed method even under conditions with high reverberation levels and intense noise.Comment: 13 pages, 5 figures, 5 table

    The Asymptotic Method Developed from Weak Turbulent Theory and the Nonlinear Permeability and Damping Rate in QGP

    Get PDF
    With asymptotic method developed from weak turbulent theory, the kinetic equations for QGP are expanded in fluctuation field potential AÎĽTA^T_\mu . Considering the second-order and third-order currents, we derive the nonlinear permeability tensor function from Yang-Mills field equation, and find that the third-order current is more important in turbulent theory. The nonlinear permeability formulae for longitudinal color oscillations show that the non-Abelian effects are more important than the Abelian-like effects. To compare with other works, we give the numerical result of the damping rate for the modes with zero wave vector.Comment: 16page
    • …
    corecore